

Landscape Climate Change Vulnerability Project (LCC-VP): What did the project accomplish?

Montana State University:

Andy Hansen, Nate Piekielek, Tony Chang, Linda Phillips

NPS / Great Northern LCC:

Tom Olliff

NPS I&M Program:

Bill Monihan and John Gross

CSU Monterey Bay / NASA Ames:

Forrest Melton, Weile Wang

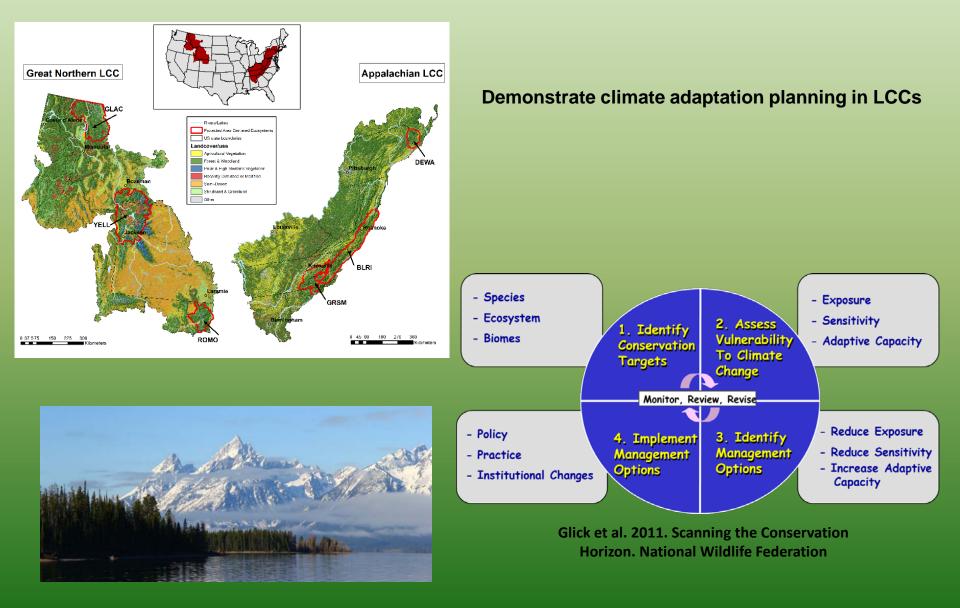
Conservation Science Partners:

Dave Theobald

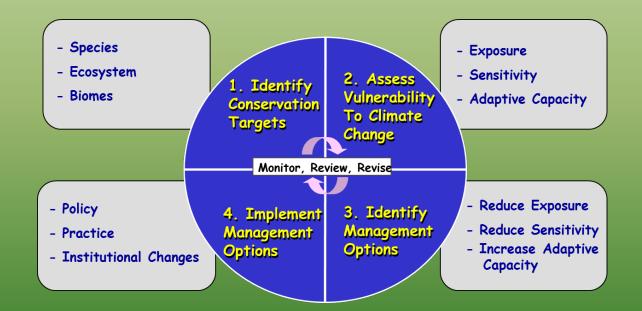
Woods Hole Research Center:

Scott Goetz, Patrick Jantz, Brendan Rogers, Tina Cormier, Scott Zolkos

NASA Applied Sciences Program (NNH10ZDA001N - BIOCLIM)


NPS I&M Program

Objective



Climate Adaptation Planning

Secretarial order 3289 (2010)

- "apply scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts".
- Climate Science Centers
- Landscape Conservation Cooperatives
- 2010 2015 a period of rapid evolution and progress.

Glick et al. 2011. Scanning the Conservation Horizon. National Wildlife Federation

Engage Partners

Rocky Mountain NP

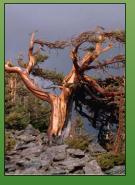
Ben Bobowski, Chief of Resources, Rocky Mountain National Park

Unprecedented winter fires and landslides.

<u>Issues:</u> Snow/runoff, fire, landslides, forest die-off, Cheatgrass

<u>Great Smokey Mt, Shenandoah, Delaware</u> <u>Water Gap NP</u>

Unprecedented winter fires and landslides.

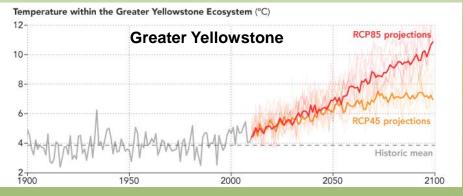

<u>Issues:</u> Cove forests, subalpine communities, managing for resilience

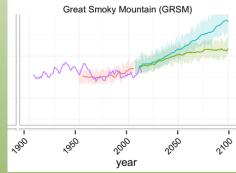
Clingman's Dome. Balsam Wooly Adelgid damage to Fraser Fir on Clingman's Dome.

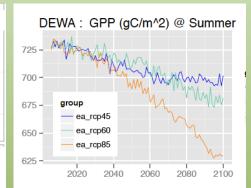
Yellowstone NP, Grand Teton NP

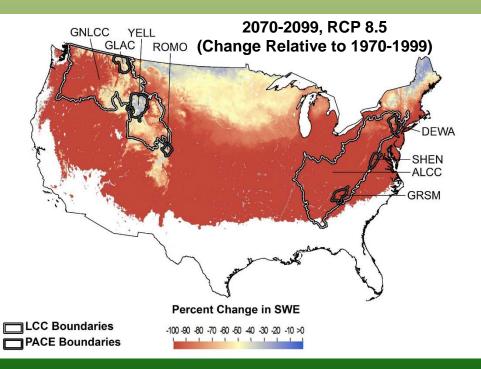
Superintendent <u>Issues:</u> Snow/runoff, subalpine forests, whitebark pine management

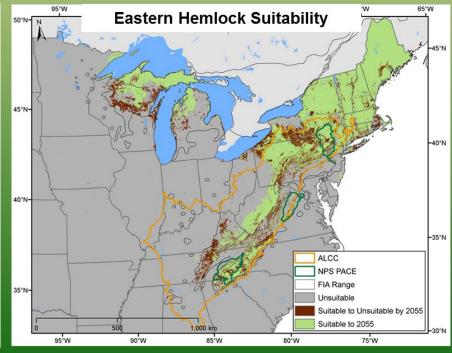
Collaborating Agencies

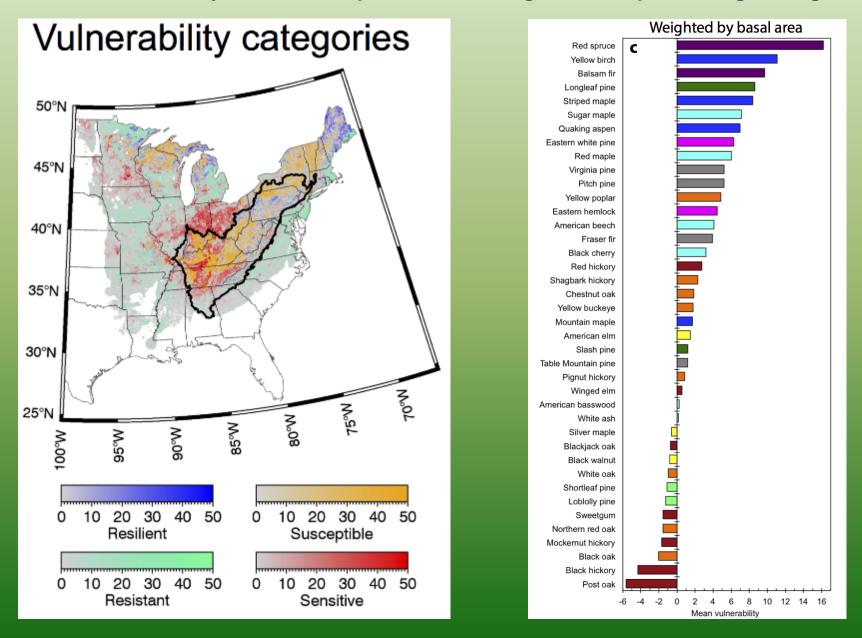

<u>Issues:</u> Delivery of climate adaptation approaches

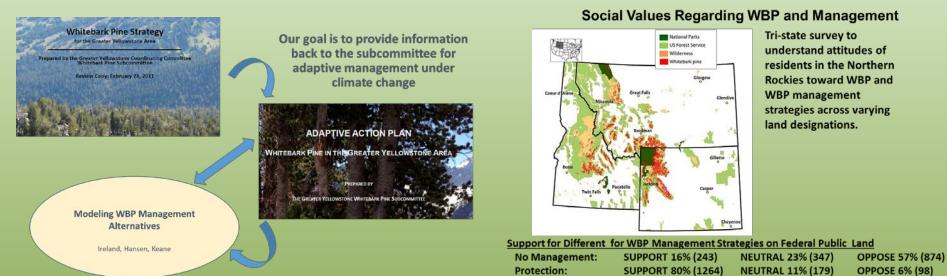

Ecological Hindcasting and Forecasting


Ecological hindcasting and forecasting is invaluable for placing current patterns in context


Northern Rockies


Appalachians




Vulnerability Assessment

Vulnerability assessment provides a strong basis for prioritizing management

Management Evaluation and Implementation

Whitebark Pine

Management treatments stratified by habitat suitability zones

Restoration:

		Treatments						
Climate Zone Future Risk Factors		Planting	Thinning	Protection	Prescribed Fire	Wildland Fire Use		
	Future Competition							
Core	Low	Х	Х	Х	Х	Х		
	Low-mid	Х	Х	Х	Х	Х		
	Mid-high	Х	Х	Х	Х	Х		
	High	Х	х	Х	Х	Х		
	Future Competition							
Deteriorating	Low	Х		Х				
	Low-mid	Х		Х				
	Mid-high		х	Х	Х	Х		
	High		Х	Х	Х	Х		
	Future Competition							
Future	Low	Х		X*				
	Low-mid	Х	х	X*	Х	Х		
	Mid-high							
	High							

SUPPORT 80% (1265)

NEUTRAL 12% (199)

OPPOSE 5% (78)

Decision Support Products

"It is imperative in a decision space that mandates science that managers understand the nuances of the science they are using as inputs into decision making. Managers can better understand scientific models and studies if they are integrated early in the scientific process."

Tom Olliff, GNLCC Co-coordinator

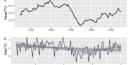
"We found that effective communication and information transfer required the project team to develop and present a multitude of products that vary in length, technical detail, and format to meet specific and different needs. The most effective communication requires the right information, delivered to the right people, in the right format, at the right time."

"The framework we described explicitly shows how the tools of climate change adaptation—vulnerability assessments, climate hindcasting and projections, ecological models, and adaption options—fit together to help inform decisions and build a foundation for scientists and managers to work together on climate adaptation."

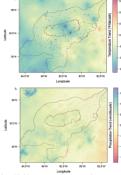
John Gross, NPS Climate Change Scientist

Decision Support Products

Resource Briefs


Great Smoky Mountains National Park **Climate Change Brief**

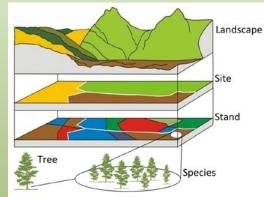
What We've Seen: Observed Trends in Temperature and Precipitation


Great Smoky Mountains National Park contains some of the highest elevation terrain in the southeast, giving the park some of the coolest annual temperatures in the region and some of the highest levels of precipitation in the U.S. This climatic diversity supports a wide range of species and ecosystems, including a global hotspot of salamander diversity, and is a critical part of the visitor experi-

Unlike other parts of the U.S., the southeast has not shown significant warming trends over the past century (Capparelli et al. 2013). Minor cooling of 0.4°C calculated from gridded climate surfaces for the Park and surrounding area over the last century (Figure 1a) is consistent with this broader regional pattern.

ntury in the first half of th SM data (Daly et al. 1994)).

Temperature anomalies, defined as departures from a long term mean, show multi-decadal fluctuations on the order of 1°C, revealing the influence of low frequency changes in sea surface pressure in the Western and North Atlantic Ocean (Anchukaitis 2006)


imure 2 (a) Min creased in the park over the (1895 - 2006). Locations of select weather stations are in slightly positive in GRSM y but were small relative to a rs from PRISM data (Daly et al. 1994) These low frequency oscillations in sea surface pressure are associated with temperature trends that switch from positive to negative every few decades (Figure 1b).

Precipitation showed no significant linear trend over the last century, although tree ring reconstructions for longer time periods for the southeast indicate that the mid to late 20th century was wetter than

Policy

NPS Revisiting Leopold Implementation Plan IUCN Climate Adaptation Guide

Book

EDITED BY

limate Change in Wildlands

Pioneering Approaches to Science and Management

Decision Support Tools

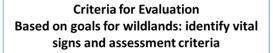
Evaluating Management Alternatives: Simulation Modeling with FireBGCv2

Scale	Description	Processes simulated
Landscape	Extent of simulation area	Fire, ignition, seed dispersal
Site	Same biophysical setting	Weather, soils
Stand	Vegetation communities	PSN, respiration, ET
Species	Trees, shrubs, grasses	Regeneration, Phenology
Tree	Individual tree elements	Mortality, growth, litterfall

Planting Site Assessment Checklist

Publications 22 peer-reviewed papers

Data Housed in DataBasin and USGS ScienceBase


A Land Health Index to Evaluate Wildland Ecosystems

Sustaining Wildland Ecosystems: Overview of the Problems and Possible Solutions

Andy Hansen, John Gross, Scott Goetz

Sustaining Wildland Ecosystems through Monitoring and Communication to Stakeholders Workshop February 17-20, 2016 B Bar Ranch in Emigrant, Montana

Assessing Ecological Condition of Wildlands: A Decision Support System

Monitoring of Vital Signs

Evaluating Trends and Condition

Communication and Engagement of Stakeholders

Level 1 Vital Sign	Level 2 Vital Sign	Level 3 Vital Signs					-
Stressors /	Urbanization	Land cover and use	Vital Sign	National Parks	Other Federal	Private	
Threats	Intensive land use	Distance to roads & other infrastructure		and Wilderness	Lands	Lands	
		Integrated human footprint					
Water		Night lights Snow cover and extent	Snowpack / Runoff				
water	Water quantity Flow regime	Frozen - non-frozen season timing &	Air quality				
	Flow regime	duration	Underlagic Integrity			_	
		Stream / river hydrology	Hydrologic integrity				
		Soil moisture	Forest mortality				
Weather and	Seasonality	Climate & meteorology	Wildfire deviation				
Climate	Climate	Climate change velocity and novel climates	when e deviation				
		Land surface temperature	Forest climate suitabilit	ty			
Habitat	Ecosystem extent	Habitat integrity / intactness	Habitat intactness				
	Intactness / pattern	Habitat fragmentation & connectivity	mabitat intactiless				
	Stream intactness	Canopy structure, height, biomass	Large mammals				
	Community naturalness	Stream / river fragmentation	Native fish			_	
Species	Trophic structure	Completeness of animal communities	indive lish			_	
	Threatened species	IUCN red-listed species		Likely	Possibly	Relatively	_
Ecosystem	Disturbance	Fire & deforestation extent and frequency		deteriorating	deteriorating	stable	
Processes	Plant growth (productivity)	Annual plant growth rate					
	Forest structure	Start, peak & end of growing season					

Acknowledgements

NASA Applied Sciences Program (Grant 10-BIOCLIM10-0034) NSF EPSCoR Track-I EPS-1101342 (INSTEP 3) NASA Land Cover Land Use Change Program North Central Climate Sciences Center

Federal agency collaborators

